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Lecture 2. Pipe flow hydraulics

1 How do we define hydraulic Gradient and Energy Gradient?

We need two further concepts, the Hydraulic Gradient and the Energy Gradient, which we
can apply to pipe and channel systems. Here we will always assume that the flow is
turbulent, so that the Coriolis averaging coefficient can be assumed to be equal to 1. See the
figure below.

Hydraulic gradient is the plot of potential energy, i.e. % + z = h,, against distance along the

pipe (horizontal distance usually, which for realistic small pipe gradients will be much the
same as the slope distance). This quantity is usually indicated with h.

2
Energy gradient is the hydraulic gradient plus the velocity head, i.e. H = g—g + % + z against

distance. This is the total head and is usually indicated with H.
We sometimes call the energy gradient the friction slope. You may see it notated S¢ or j;

The motion of a fluid implies that a distributed dissipation j per unit length x,
OH

ox
occurs, causing for steady motion in pipes of constant diameter a constant decrease of both

the piezometric and total head, i.e. of the total energy of the fluid (Figure 1). The total
energy loss AH, over a length / due to distributed dissipation is therefore

AHg=il.

Clearly for steady flow in a pipe of constant cross section, the two gradient lines will be

72
;—g. However if the pipe section changes, u will
change so the separation of the two lines will also change.

separated by a constant distance given by

If a stand pipe were inserted into the pipe system (at right angles to the flow direction) the
water would rise up to the level of the hydraulic gradient.

For flow in pressurized pipes (such as most water mains and storm water sewers in storm
conditions) the hydraulic gradient is not the same as the geometric gradient. It is the head
difference along the pipe divided by the pipe length, not the elevation difference divided by
the length.
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Figure 1

2 Distributed vs localized friction losses

In the case of fully developed turbulent motion within rough pipes (i.e. f=f(k/d)) the Coriolis

coefficient o, can be assumed equal to 1 and several practice formulas are useful to
approximate the distributed friction losses i
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These practical formulas are useful because they are explicit and therefore of easier use
compared to implicit ones like the Collebrook & White one, etc.

Local losses due to bends, restrictions, expansions, etc appear in both lines as vertical drops.
As such localized energies losses AH, can be expressed as a fraction § of the kinetic energy of

the fluid in the reach downstream the variation in the pipe geometry AH, = E—

Similarly, energy inputs such as pumping appear as vertical rises.
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3 Various (short) pipeline configurations

* This is a reprise of the second year pipe flow example for revision purposes. See notes in
class. As an example, let us consider the graphic representation of the energetic content of
the stream in steady pipe flow;

* They key point is balancing head available to drive the flow, either from elevation up a
hillside or from a pump, with the friction losses which increase as the flow goes faster.
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This is another interesting scheme very often used in irrigation plants
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4 \Verification vs design problems
2
* Notice, that by using the continuity equation for the pipe, Q = u% = const, the energy

balance equation can be rewritten in terms of flow rate, Q thus allowing for calculating the
flow rate once the geometry of the pipe system (lengths, diameters, restrictions, etc), the
pipe roughness and the available energy are known (verification problem). Similarly, if the
flow rate is known, one can compute the diameter to convey it with the assigned available
energy (design problem). We can summarize the two problems as

GENERAL VERIFICATION PROBLEMS GENERAL DESIGN PROBLEM

U J

KNOWN: D, L, i, &or equivalent roughness || KNOWN: O, L. i, & or equivalent roughness

U U

UN WN: . . UNKNOWN: best diameter D (pipe size) to
KII\IIO h ) ?ffeC?V? flow rate Q Eaismg convoy the flow rate Q with the established
within the pipe o dlameter D with the diSSipatiOn per unit length i

established dissipation per unit lengh i




5 Trunk Main Design

Having reminded ourselves of the fundamentals of fluid flow in pipes we can design a gravity
flow main such as might be used to supply water over a downhill route.

A typical arrangement is shown in the figure below.

Note that the pipe follows the contours. This saves excessive trenching.

Provided that the outlet is lower than the inlet and the pipe flows full, the short uphill
sections do not matter.

However in order to fill the pipe at start up, there must be air valves at the top of the
humps.

Similarly washout valves are provided at local low points to allow drainage for maintenance.
The figure shows local energy losses related to bends, valves etc.

There will also be structural requirements, not covered in this course.

For example, a bend will result in a force as can readily be determined by applying the
momentum equation. In such cases thrust blocks may be provided to ensure the pipe
remains stable.

Break-pressure tanks may be provided (not shown) if the head loss over the pipe is far
greater than needed for the flow. These are small tanks with a free surface. The inlet to
them is controlled by a float valve, so they do not overflow, and the outlet is gravity fed.
Such tanks ‘reset’ the pressure in the pipe to zero.
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6 Hydraulically-long pipes (pipelines)

Let us study now a pipe hydraulically long (pipeline) and consider only the piezometric A-A’.

Moreover the line B-B’ represents the piezometric referred to the absolute pressure. If the fluid

being considered is water then the distance between the two lines is equal to pam/y=10.33 m

(Figure 6).
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Figure 6. Sketch of a pipeline connecting two reservoirs. For steady flow the energy dissipation is
represented by the slope of the piezometric line.

We are interested in quantifying the ratio between the length of the pipe, L and the diameter, d,
such that the kinetic term can be neglected in the calculation compared to distributed friction
losses. In other words, energies losses due to localized dissipation in presence of geometrical
discontinuity as long as the kinetic term (which is usually relatively small, i.e. few m/s) can be
neglected (if compared to distributed dissipation) if the pipe is ‘sufficiently long’. In this case
both the lines of the total and piezometric heads will coincide, and it is useful to work only
considering the piezometric head of the stream (Figure 6).
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For pipeline systems, the kinetic and energy losses that have order of magnitude z—g can be

neglected by accepting an approximate solution, i.e. involving a small error. The equation of
motion for the flow within the pipelines of Figure 6 is therefore

Az=jlL. (9)

We show now which is the condition that allows to define a pipe as hydraulically long.

ﬂz

Let us compare a localized dissipation of magnitude p to an equivalent distributed one over a

29
generic length L, ie.

—=1iL"
29

Supposing to express the distributed energies losses by means of the Chezy formula, we have

, u?
L= C2R’

and considering that for circular pipes R=d/4, and using the definition of the friction factor
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f= ﬁ—é, we obtains the following relations for C
2g
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which lead to the result

L= (13)

b
-

Considering a common value for the friction factor, f=0.02, we have that along a reach of length

* 72
L =50d the stream dissipates an energy equal to the kinetic term g—g.

Definition: A pipe is called ‘hydraulically long’, regardless the presence of a weak discontinuity in
the geometry which induces a localized head loss, if the total pipe length is at least L > 20 L, ie.
L > 1000d.

Example

Let us now calculate which should be the effective length of a pipe in order to consider it as
hydraulically long.

We suppose to accept an approximation of the exact solution of about 4%, i.e 0.04.

The equivalent length L thanks to which we would neglect the velocity head, in order to solve
the problem with the chosen approximation, can be expressed as a number n of time the pipe
diameter d, i.e. L=nd .

Therefore we have that
u? u? u?
E < 0.04Lf257 = 0.04-Tldf Z.gTd'

and, as a consequence

1

n= 0.04f"

Assuming now a friction factor f=0.025, the result is therefore n=1000. This means that for this
system if one neglects the velocity head in the calculation, the result will have an approximation
of the 4% only if the pipe length is about 1000 times the pipe diameter. Of course the length of
the pipe should be longer as more as higher is the number and kind of the localized head losses.



OPEN SIPHON AS A PIPELINE
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7 Altimetry problems for pipelines

We study now the simple situation of two reservoirs connected by a pipeline which develops on soils

having different morphological levels (Figure 7). This is instructive in order to understand how the
flow will take place, and whether it may occur spontaneously or has to be triggered.

Since we deal with a pipe hydraulically long (pipeline) we neglect the velocity head and consider only
the piezometric A-A’. The line B-B’ represent the piezometric referred to the absolute pressure.
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Figure 7. Sketch of a pipeline built over soils with different morphology.

NOTE: For all the cases both the piezometric relative and absolute do not change

Case I. The motion trigs off spontaneously and the pipe is subjected to a positive pressure.

Case Il. The pipeline ‘crosses’ the piezometric relative, so the reach E-F has a pressure negative. The
motion trigs off spontaneously.

Case lll. The pipeline crosses the piezometric relative , so the reach E’-F’ has a pressure negative.
The motion doesn’t trig off spontaneously since the pipeline has also a reach above the reservoir C1
level. The motion must be trigged off artificially, for example by suction or by filling the pipe.

Case IV. The pipeline crosses both the piezometric relative and absolute, but never goes above the
reservoir C1 level. In normal condition the reach R-S would have a pressure negative less then the
atmospheric pressure. This is not possible so the system spontaneously adequate itself by changing
the slope J of the piezometric lines in the new configuration B-M (J°). The total stream flow will be
less that one would have with a slope A-A’ oer BB’. However since the pipe is always below the
Reservoi C1 level the motion trigs off spontaneously.

CASE V. Same as CASE IV but the motion has to be trigged off.

CASE VI. No configurations of motion are possible since the pipeline has a reach higher than the level
of C1 referred to the absolute piezometric.



Example 1: hydraulic verification problem

We consider a conduct constituted by two pipes of diameter D; and D, of length L; and L;, and with
diameter dependent Darcy coefficients B; and B..

Knowing the altitude of the water level z; in the tank and the altitude of the center of the section at
the end of the pipe z,, determine the discharge Q at the outlet of the pipe.

Draw the Hydraulic grade line and the Energy grade line.

D./D: £
0.01 05
Y 0.1 0.477
_ A A 0.2 0.452
N 0.3 0.425
0.4 0.396
0.5 0.358
0.6 031
Az 0.7 0.243
Z; 0.8 0.166
0.9 0.086
1 0
Z;
v z=0

‘ Li=45m;L,=25m;D1=470mm ; D,=300mm;z;=10m;z;=5m




Solution
Steps:

1) Express the terms of the energy balance as a function of the discharge Q:

i. the minor loss at the inlet of the pipe
ii. the minor loss at the connection of the two pipes
iii. the linear head loss due to friction in each pipe
iv. the velocity head loss at the outlet of the second pipe

2) Compute the discharge Q knowing that the total head loss is equal to Az.
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Energy balance



D./D: £
0.01 0.5
0.1 0.477
0.2 0.452
0.3 0.425
0.4 0.396
0.5 0.358
0.6 0.31
0.7 0.243
0.8 0.166
0.9 0.086
1 0
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- When the roughness coefficient B is unknown, it can be computed as a function of the pipe

diameter D with the following empirical function: §(D) = 2 - (0.00164 +

0.000042
D

)

In this case, the following Darcy-Weisbach equation can be used to compute the distributed loss:
. Q?
i =p(D) D5




1) Express the terms of the energy balance as a function of the discharge Q:

i. the minor loss at the inlet of the pipe

U,” Q2 2
CE P e ¥

ii. the minor loss at the connection of the two pipes

% = (0.6383, using the chart we find £ = 0.284.

1

3% _0284.— L _— 2902
Zg o ) Zg.(n-izz) o '

iii. the linear head loss due to friction in each pipe

The roughness coefficient is calculated for each pipe as follows:
0.000042

0.47
0.000042
B, =2 (0.00164 L ) = 0.0036

By =2 (0.00164 + ) = 0.0035




Then, the Darcy-Weisbach equation is used to calculate the head loss:
: Q?
ell'Ll =BllD_15.L1 == 687Q2

2
9l2L2=ﬁ2%L2=3704Q2
2

iv. the velocity head loss at the outlet of the second pipe

2 2
> 2=  -1020?
Zg 20 TL"DZZ)
9 4

2) Compute the discharge Q knowing that the total head loss is equal to Az.

A U1+§U2+ Ly + L+U2
Z_Zg 29 1L+ iy Ly 29

Az =z, — z, = Q%+ (1.695 + 2.9 + 6.87 + 37.04 + 10.2)

10—5
Q= \/(1.695 +29+687 +37.04+102)

=2 0=029m3/s




Drawing EGL and HGL for some notable cases
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